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1 Introduction

Topological data analysis (TDA) is a rapidly growing field at the intersec-
tion of applied algebraic topology, computational geometry, statistics, and data
science. Persistent homology is a particularly popular tool within TDA that’s
meant to track the persistence of features within an object. Persistence diagrams
are an important tool for representing different objects and their resulting filtra-
tions (to be defined below), and due to their importance, bottleneck distance, a
measure of the difference between two persistence diagrams, has become an im-
portant tool within TDA. In order to better improve the information measured
by bottleneck distance, an enhanced form of bottleneck distance that considers
multiple dimensions of structures in a disciplined way is considered. The second
section of this paper reviews important concepts for understanding persistent
homology and bottleneck distance; the third section of this paper discusses the
motivation behind developing an enhanced persistence metric and its theoretical
underpinnings; the fourth section reviews the methods and tools used to analyze
the effectiveness of an enhanced bottleneck metric; the fifth section reviews the
analysis done on this enhanced metric; the sixth section concludes this paper
with the limits of this research and future possibilities involving this enhanced
metric.

2 Conceptual Overview

TDA involves analyzing the topological and geometric properties underlying
the structure of data and using them to extract qualitative and quantitative
information about said data. Topological properties are shared among shapes
or structures that are homeomorphic to each other, meaning they can be trans-
formed into one another via deformation, with a few exceptions. One classic
example of this involves a donut-like shape and a mug-like shape. Assum-
ing both objects are malleable, one could be deformed into the other and vice
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versa. TDA allows for the identification and analysis of an underlying shape
in a sample of data that might be useful for drawing conclusions about said data.

Simplicial complexes are an important tool in TDA. A simplicial complex is
a set composed of points, line segments, and triangles (and potentially higher
dimensional elements that are not used in the present work). The simplest
simplex type, a point, is also referred to as a 0-dimensional simplex. This is fol-
lowed by a 1-dimensional simplex, or line, and a 2-dimensional simplex, which
is a triangle. A 3-dimensional simplex corresponds to a tetrahedron, and so
on to an n-dimensional simplex. Every n-dimensional simplex is bordered by
n + 1 (n − 1)-dimensional simplices, which are called its faces. For instance,
a 2-dimensional simplex (or triangle) is bordered by 3 1-dimensional simplices
just as a line, or a 1-simplex, is bordered by 2 points, or 0-dimensional simplices.

Although simplicial complexes are composed of simplices, arbitrary collec-
tions of simplicies are not necessarily a simplicial complex. For a set K to be a
simplicial complex, we require the following conditions:
1. Every face of a simplex from K is also in K.
2. The non-empty intersection of any two simplices σ1, σ2 ∈ K is a face of both
σ1 and σ2.

Persistent homology is an important tool in TDA that involves the usage of
simplicial complexes. It tracks both the changes in and persistence of topological
properties in an object across different scales. This is done through a filtration,
which is a family of simplicial complexes nested in one another. It can also be
thought of as a large simplicial complex with nested subcomplexes within it,
each corresponding to the same object at specific scales. It is important to note
that each subcomplex has an assigned value within a filtration. The parameters
of the scale can vary depending on the data being analyzed and choices made
by the person performing the analysis.

Filtrations defined on a function can be separated into two different cate-
gories: sublevel filtrations and superlevel filtrations. Sublevel filtrations track
the topological properties of an object as a parameter increases, with the sub-
complex at a specific scale consisting of only those simplices with a value less
than or equal to a certain value. Superlevel filtrations track the topological
properties of an object as a parameter decreases and have subcomplexes that
consist of only those simplices with a value greater than or equal to the value at
a specific scale. Figure 1 shows a filtration for a function defined on a simplicial
complex.

TDA focused on point clouds will often use a measure of distance between
different points as its scaled parameter. The TDA described in this paper, how-
ever, is focused on analyzing functions instead of point clouds. For this reason,
rather than the filtration being based on a set of points and their distances from
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Figure 1: Filtration example. This could come about by a function defined on
each 0-simplex in the full complex shown in the bottom right. Image via Chazal
(2017).

each other, it is defined on a function.

Persistence diagrams are graphs used to visually portray the persistence of
different topological features in a filtration. The x-coordinate of a point rep-
resents the value at which a specific topological feature was created, and the
y-coordinate represents the value at which a specific topological feature ceased
to exist. Points on the x = y line thus correspond to topological features that
never existed. See figure 2.

The components tracked by a persistence diagram depend on both the di-
mensionality of the object being analyzed and the focus of the person performing
the analysis. They also tend to be sorted and labeled based on their dimen-
sionality. 0-dimensional components are connected components, 1-dimensional
structures are holes formed by 1 simplices, and 2-dimensional structures are
voids, i.e. regions bounded by 2-dimensional simplices.

Persistence diagrams are thus a graphical summary of the homological per-
sistence of a filtration. Given two persistence diagrams, X and Y (i.e. two sets
of ordered pairs, i.e. birth and death times of topological features), bottleneck
distance, W (X,Y ), is a measure of the distance between. In order to calcu-
late the bottleneck distance, first a minimal bijective, or one to one, matching
ϕ would need to be found between sets A and B based on the L∞ distance
between points. The bottleneck distance would be the maximum L∞ distance
between two points in this minimal bijective matching.

W∞(X,Y ) := inf
φ:X→Y

sup
x∈X

∥x− φ(x)∥∞

The L∞ distance is the maximum difference among the differences between
x-coordinates and the difference between y-coordinates for two points.
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Figure 2: The persistence diagram coming from a sub-level set filtration on the
function f(x). Image via Edelsbrunner et al (2019).

3 Enhanced Persistence

Typically, in comparing a collection of data objects via their persistence dia-
grams, the scientist makes a decision of which dimensional structures to compare
in calculating the bottleneck distance. In fact, the R function bottleneck in the
TDA library requires an explicit choice of dimension. While certainly one can
combine the bottleneck distance in multiple dimensions, information is lost in
doing so. Holes found in the filtration exist within particular connected compo-
nents. Consider the two objects “18” and “96”. Both consist of two connected
components, and two holes. However they are topologically different, as “18”
consists of both holes existing in the same connected component.

The idea of enhanced persistence is to connect connected components with
their high dimensional homology. This is accomplished by considering the con-
nected components coming from a superlevel set filtration, and then individually
computing the persistence diagram with respect to one-dimensional homology
for each of these connected components.

Consequently, we view a persistence diagram of 0-dimensional points as a
diagram consisting of not just birth and death times (bi, di) but also its implicit
homology: (bi, di, Ai) where X is a persistence diagram for 1-dimensional holes.

We then adapt the bottleneck distance to this new high dimensional object
as follows:

W∞(X,Y ) := inf
φ:X→Y

[
sup
x∈X

∥x− φ(x)∥∞ + γW∞(A, ϕ(A))
]

(1)
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4 Methods

The programming language R was used to perform calculations and algo-
rithms, generate functions, and conduct persistent homology analysis. Two
programming libraries besides base R were used: the TDA and igraph libraries.
Concepts from graph theory were also used in performing calculations, so it is
necessary to go over them for full understanding of the algorithm used to cal-
culate enhanced bottleneck distance. A bipartite graph is a matching between
two sets such that no two elements within the same set are matched to each
other. For example, elements in set A match to elements in set B, but no two
elements in set A are matched to each other and no two elements in set B are
matched to each other. A maximal bipartite graph is a bipartite graph with the
largest possible number of matchings.

In order to calculate enhanced bottleneck distance, an algorithm needed to
be written in code first. The following algorithm for calculating bottleneck
distance is detailed via Hellmer (2021):
1. Compute bipartite graph detailing all possible pairings between points in set
A and points in set B. Set A consists of all off-diagonal points in persistence
diagram A and the closest diagonal projections of all off-diagonal points in
persistence diagram B. Set B consists of all off-diagonal points in persistence
diagram B and the closest diagonal projections of all off-diagonal points in
persistence diagram A.
2. Assign costs to each pairing. The cost of pairings between off-diagonal points
from differing sets is their L-infinity distance, and the cost between off-diagonal
points and their closest diagonal projections is also their L-infinity distance.
Pairings between diagonal projections have a cost of 0 because these pairings
could never represent the bottleneck distance.
3. Sort these costs in order of smallest to largest and perform a binary search
for the bipartite match with the smallest cost sum among all possible bipartite
matches that include all off-diagonal and diagonal points in their pairings. The
binary search is performed by filtering out matchings that are greater than a
certain cost from the maximum bipartite matching per each iteration.

Hierarchical clustering was used to assess the effectiveness of the enhanced
bottleneck metric. This is an unsupervised algorithm that groups objects to-
gether using a distance matrix. Objects that are in the same group or subgroup
are more closely associated with each other than objects that are in different
groups.

5 Results

In order to assess the effectiveness of an enhanced bottleneck metric in mea-
suring function distance, the best way to measure normal bottleneck distance
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Figure 3: Example Dendrogram. The y-axis is a measure of the distance between
different groups.

was first assessed. To do this, 20 functions were simulated, with functions 1-
10 pertaining to functions of the same type and functions 11–20 pertaining to
functions of another type.

Specifically, functions were generated as follows:

f(x, y) =
1

2
sin(20y) + y2 +

1

20
g(x, y;µ1) +

1

20
g(x, y;µ1)

where g(x, y;µ) is a bi-variate normal density centered at µ with covariance
matrix Σ = .042I. µ1 ∼ N((.4, .4), .022I) for observations from class 1 and
µ1 ∼ N((.4, .65), .022I) for observations from class 2. µ2 = (0.67, 0.67) for both
classes. Examples of these functions can be seen in figures 5 and 7.

Afterwards, 4 matrices of bottleneck distances between the different func-
tions were formed. Each matrix corresponded to bottleneck distances assessed
with a different type of filtration and dimensional component. Normal bottle-
neck distance was assessed using these four different parameters: 0-dimensional
components and superlevel filtration, 1-dimensional components and superlevel
filtration, 0-dimensional components and sublevel filtration, 1-dimensional com-
ponents and superlevel filtration. For each set of bottleneck distances, functions
were grouped together using hierarchical clustering. Only the dendrogram re-
sulting from bottleneck distances assessed using 0-dimensional components and
superlevel filtration successfully grouped the functions based on their type.

In order to calculate enhanced bottleneck distance, the cost of pairings be-
tween off-diagonal points and pairings between off-diagonal points and their
diagonal projection became the sum of their L−∞ distance and the normal bot-
tleneck distance between the persistence diagrams of each point’s corresponding
connected component. For each connected component coming from the super-
level set filtration, the largest subcomplex for that component was found. See
figure 4. Then, the persistence diagram for 1-dimensional features was com-
puted for each of these sub-complexes. Bottleneck distance was then computed
using equation (1) with γ = .5.
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Figure 4: A subcomplex corresponding to the connected component generated
from superlevel set filtration just before being absorbed into the connected com-
ponent generated by the second mode as in figure 7. The persistence diagram
corresponding to 1-dimensional structures based on the sublevel set filtration
will exhibit one hole corresponding to the “bump.”

Figure 5: A function for which two normal “bumps” live on the same ridge.
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Figure 6: An enhanced persistence diagram where each colored point corre-
sponding to a connected component is enhanced with the 1-dimensional persis-
tence diagram of the same color. Lines correspond to which connected compo-
nent each connected component merged into at “death” time. The underlying
function is given in figure 5.
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Figure 7: A function for which two normal “bumps” live on different ridges.

Figure 8: The enhanced persistence diagram for a function similar to figure 7
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Figure 9: Cluster Dendrograms of Functions. The dendrogram on the left cor-
responds to bottleneck distances with enhanced persistence and the one on the
right corresponds to normal bottleneck.

Although both types of bottleneck distance resulted in the 20 functions be-
ing accurately sorted based on function type, the cluster dendrogram resulting
from the bottleneck distance using enhanced persistence showed a greater dif-
ference between the two clusters than the dendrogram resulting from normal
bottleneck distance. This can be seen by the y-axis on both dendrograms. En-
hanced persistence thus seems to improve the ability of bottleneck distance to
distinguish between different types of functions. More analysis would need to
be run to confirm this, however.

6 Conclusion

Bottleneck distance calculated with enhanced persistence presents a possible
avenue for both increasing the amount of information provided by it and im-
proving it as a metric. The analysis conducted in this paper serves as more of a
preliminary analysis of its potential. More research is needed to see if bottleneck
distance would benefit from the addition of enhanced persistence. Conducting
more simulations with a larger variety of functions could be a potential research
possibility. Assessing enhanced persistence alongside distance functions could
also be useful in seeing if its use could be extended to the analysis of point
clouds.
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